Polymorphisms in the XPC gene affect urinary bladder cancer risk: a case-control study, meta-analyses and trial sequential analyses
نویسندگان
چکیده
Compromised activity of the DNA repair enzymes may raise the risk of a number of cancers. We analyzed polymorphisms in the Xeroderma Pigmentosum, Complementation Group C (XPC) gene for their correlation with urinary bladder cancer. Ala499Val and Lys939Gln polymorphisms were genotyped in 234 urinary bladder cancer cases and 258 control samples. A significant association between Ala499Val polymorphism and bladder cancer was observed (OR = 1.78, CI = 1.19-2.66, p = 0.005); however, Lys939Gln was unrelated (OR = 0.97, CI = 0.65-1.45, P = 0.89). Further analysis revealed that Ala499Val was a significant risk factor only in the presence of smoking (OR = 2.23, CI = 1.28-3.87, p < 0.004) or tobacco chewing (OR = 2.40, CI = 1.43-4.04, p = 0.0008). To further appraise the association, we undertook meta-analyses on seven studies (2893 cases and 3056 controls) on Ala499Val polymorphism and eleven studies (5064 cases and 5208 controls) on Lys939Gln polymorphism. Meta-analyses corroborated the above results, showing strong association of Ala499Val (OR = 1.54, CI = 1.21-1.97, p = 0.001) but not that of Lys939Gln (OR = 1.13, CI = 0.95-1.34, p = 0.171) with urinary bladder cancer risk. In conclusion, XPC Ala499Val substitution increases urinary bladder cancer risk, but Lys939Gln appears to be neutral.
منابع مشابه
Polymorphisms in DNA repair genes, smoking, and bladder cancer risk: findings from the international consortium of bladder cancer.
Tobacco smoking is the most important and well-established bladder cancer risk factor and a rich source of chemical carcinogens and reactive oxygen species that can induce damage to DNA in urothelial cells. Therefore, common variation in DNA repair genes might modify bladder cancer risk. In this study, we present results from meta-analyses and pooled analyses conducted as part of the Internatio...
متن کاملXPC 939A>C and 499C>T polymorphisms and skin cancer risk: a meta-analysis.
The xeroderma pigmentosum complementation group C gene (XPC) has been identified as important for repairing UV-related DNA damage. Some subtle changes in this gene may impair repair efficiency and influence susceptibility to human cancers, including skin cancer. Two polymorphisms in XPC, 939A>C (rs2228001) and 499C>T (rs2228000), are considered to have possible associations with the risk of ski...
متن کاملComprehensive analysis of 22 XPC polymorphisms and bladder cancer risk.
Two major risk factors for bladder cancer are smoking and occupational exposure to chemicals. The XPC protein is crucial in the recognition and initiation of the nucleotide excision repair pathway which repairs the DNA adducts formed by carcinogens found in cigarette smoke and chemicals. Polymorphisms in the XPC gene have been shown to influence an individual's DNA repair capacity, and hence, i...
متن کاملInteractions between cigarette smoking and XPC-PAT genetic polymorphism enhance bladder cancer risk.
Inherited polymorphisms in the XPC gene that lead to a reduction in DNA repair capacity may increase susceptibility to bladder cancer. We investigated three polymorphisms of the XPC gene (PAT, Ala499Val and Lys939Gln) in 600 subjects with bladder cancer and in 609 healthy controls by a polymerase chain reaction-restriction fragment length polymorp...
متن کاملThe association between XPC Lys939Gln gene polymorphism and urinary bladder cancer susceptibility: a systematic review and meta-analysis
BACKGROUND Numerous epidemiological studies have been conducted to explore the association between the Lys939Gln polymorphism of Xeroderma pigmentosum group C (XPC) gene and urinary bladder cancer susceptibility. However, the results remain inconclusive. In order to derive a more precise estimation of this relationship, a large and update meta-analysis was performed in this study. METHODS A c...
متن کامل